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Introduction

THIS paper deals with the mathematical analysis of noise obtained by
passing random noise through physical devices. The random noise

considered is that which arises from shot effect in vacuum tubes or from

thermal agitation of electrons in resistors. Our main interest is in the sta-

tistical properties of such noise and we leave to one side many physical

results of which Nyquist's law may be given as an example.^

About half of the work given here is believed to be new, the bulk of the

new results appearing in Parts III and IV. In order to provide a suitable

introduction to these results and also to bring out their relation to the work

of others, this paper is written as an exposition of the subject indicated in

the title.

When a broad band of random noise is applied to some physical device,

such as an electrical network, the statistical properties of the output are

often of interest. For example, when the noise is due to shot effect, its

mean and standard deviations are given by Campbell's theorem (Part I)

when the physical device is linear. Additional information of this sort

is given by the (auto) correlation function which is a rough measure of the

dependence of values of the output separated by a fixed time interval.

The paper consists of four main parts. The first part is concerned with

shot effect. The shot effect is important not only in its own right but

also because it is a typical source of noise. The Fourier series representa-

tion of a noise current, which is used extensively in the following parts, may
be obtained from the relatively simple concepts inherent in the shot effect.

The second part is devoted principally to the fundamental result that the

power spectrum of a noise current is the Fourier transform of its correlation

function. This result is used again and again in Parts III and IV.

A rather thorough discussion of the statistics of random noise currents

is given in Part III. Probability distributions associated with the maxima

of the current and the maxima of its envelope are developed. Formulas

for the expected number of zeros and maxima per second are given, and a

start is made towards obtaining the probability distribution of the zeros.

When a noise voltage or a noise voltage plus a signal is applied to a non-

'An account of this field is given by E. B. Moullin, "Spontaneous Fluctuations of

Voltage," Oxford (1938).
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linear device, such as a square-law or linear rectifier, the output will also

contain noise. The methods which are available for computing the amount
of noise and its spectral distribution are discussed in Part IV.
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Summary of Results

Before proceeding to the main body of the paper, we shall state some of

the principal results. It is hoped that this summary will give the casual

reader an over-all view of the material covered and at the same time guide

the reader who is interested in obtaining some particular item of informa-

tion to those portions of the paper which may possibly contain it.

Part I—Shot Effect

Shot effect noise results from the superposition of a great number of

disturbances which occur at random. A large class of noise generators

produce noise in this way.

Suppose that the arrival of an electron at the anode of the vacuum tube

at time t = produces an effect F(t) at some point in the output circuit.

If the output circuit is such that the effects of the various electrons add
linearly, the total effect at time t due to all the electrons is

/(') = f> Hi- h) (1.2-1)

where the fe* electron arrives at tu and the series is assumed to converge.

Although the terminology suggests that /(/) is a current, and it will be

spoken of as a noise current, it may be any quantity expressible in the form

(1.2-1).

1. Campbell's theorem: The average value of /(/) is

/(/) = ' I F{t) dt
'

(1.2-2)

and the mean square value of the fluctuation about this average is

ave. [/(/) - lit)? = V f F^(t) dt (1.2-3)
J- CO
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where p is the average number of electrons arriving per second at the anode.

In this expression the electrons are supposed to arrive independently and at

random, ve^'^ di is the probability that the length of the interval between

two successive arrivals lies between / and / + dt.

2. Generalization of Campbell's theorem. Campbell's theorem gives

information about the average value and the standard deviation of the

probability distribution of I{t). A generalization of the theorem gives

information about the third and higher order moments. Let

/(/) =i:fl.F(^ - k) (1.5-1)
— 00

where F{t) and tk are of the same nature as those in (1.2-1) and -ai

,

di , • •• Ok , • • are independent random variables all having the same

distribution. Then the «*'' semi-invariant of the probabiUty density P(/)

of / = /(/) is

Xn= V? r'°[F(i)Tdl (1.5-2)
J- 00

The semi-invariants are defined as the coefficients in the expansion of the

characteristic function /(m):

loge/(«) = i;^;(^«)" (1-5-3)

where

/(«) = ave. e''" = f
"

P(7)e''"
J- 00

-I- "5

dl

The moments may be computed from the X's.

3. As J-
—> 00 the probability density P(/) of the shot effect current ap-

proaches a normal law. The way it is approached is given by

-1 (0)/..^
^3*''

<3)i
P(I) ~ (7 tp {X) — ip {X)

+ [^%<«(^) + '^' /'(:.)] +
(1.6-3)

where the X's are given by (1.5-2) and

7-7 <.w . 1 rf" -
^^ = X, x= '

' ^*"'(r«) = -y^
a V27r\/27r dx''

x^l2

Since the X's are of the order of v, a is of the order of v'^ and the orders of

<r\ \w~\ U(T~'' and Xlff"' are v~"\ v~\ T''' and v"'" respectively. A

i
•- •*-,.
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possible use of this result is to determine whether a noise due to random in-

dependent events occuring at the rate of v per second may be regarded as

"random noise" in the sense of this work.

4. When I(t), as given by (1.5-1), is analyzed as a Fourier series over an
interval of length T a set of Fourier coefiBcients is obtained. By taking

many different intervals, all of length T, many sets of coefficients are

obtained. K i* is sufficiently large these coefficients tend to be distributed

normally and independently. A discussion of this is given in section 1.7.

Part II—Power Spectra and Correlation Functions

1. Suppose we have a curve, such as an oscillogram of a noise current,

which extends from / = to / = oo. Let this curve be denoted by /(/).

The correlation function of I(t) is ^(r) which is defined as

Hr) = Limit J f I{i)Iit + r) dt (2.1-4)

where the limit is assumed to exist. This function is closely connected

with another function, the power spectrum, w(f), of I(t). I{t) may be

regarded as composed of many sinusoidal components. If I(t) were a

noise current and if it were to flow through a resistance of one ohm the

average power dissipated by those components whose frequencies lie be-

tween/and/ 4* (//would be wif) df.

The relation between w(y) and ^(t) is

w{f) = 4 /" ^(7) cos IttfTdT (2.1-5)
Jo

4,{t) = [ w(f) cos 2irfT df (2.1H3)
Jo

When /(/) has no d.c. or periodic components,

w{f) = Limit ^
' y^ ''

(2.1-3)

where

-2T,7i
SU) = /Ja

I(t)e-''*" dt.
'0

The correlation function for

/(/) = ^ + C co9 (27r/o/ - if)

IS

^P{t) = ^' + £ cos 27r/oT (2.2-3)

These results are discussed in sections 2.1 to 2.4 inclusive.

.
_.r_^-*-^gi:^s^, .^.rirt'iki^i"-' -^*U-«JdL;*.fc.&s-^;«.,'-..
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2. So far we have supposed I{t) to be some definite function for which a

curve may be drawn. Now consider /(/) to be given by a mathematical

expression into which, besides t, a number of parameters enter. w{J) and

^(t) are now obtained by averaging the integrals over the possible values

of the parameters. This is discussed in section 2.5.

3. The correlation function for the shot effect current of (1.2-1) is

i^(t) = V j^" F{t)F{t -\-T)dt-\- U
j_^

F{t) dt] (2.6-2)

The distributed portion of the power spectrum is

where

sif) = r"^ F(t)e~"'^' dt (2.6-5)
J- 00

The complete power spectrum has in_ addition to ivi(f) an impulse func-

tion representing the d.c. component /(/).

In the formulas above for the shot effect it was assumed that the expected

number, v, of electrons per second did not vary with time. A case in which

V does vary with time is briefly discussed near the end of Section 2.6.

4. Random telegraph signal. Let 7(0 be equal to either a or -a so that

it is of the form of a flat top wave, and let the lengths of the tops and bot-

toms be distributed independently and exponentially. The correlation

function and power spectrum of / are

^(r) = a=6-^''' (2.7-4)

win = 2a2 ' (2.7-5)

where fx is the expected number of changes of sign per second.

Another type of random telegraph signal may be formed as follows : Divide

the time scale into intervals of equal length h. In an interval selected at

random the value of 1(1) is independent of the value in the other intervals

and is equally likely to be +a or -a. The correlation function of /(/) is

zero for
I
T

I
> A and is

••(-'t')

for <
I

T
I

< /! and the power spectrum is

„(;) = 2h ("-^J
(2-7-9)
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5. There are two representations of a random noise current which are

especially useful. The first one is

Hi) = E (an COS wn/ + K sin «„0 (2.8-1)
n-l

where an and 5„ are independent random variables which are distributed

normally about zero with the standard deviation \/mj(/„)A/ and where

0), = 2ir/„
, /„ = mA/

The second one is

J(0 = E '^" cos (w„/ - iprd (2.8hS)
n-l

where ^„ is a random phase angle distributed uniformly over the range

(0, 2ir) and

c„ = [2wif^)Afr

At an appropriate point in the analysis N and Af are made to approach

infinity and zero, respectively, in such a manner that the entire frequency

band is covered by the summations (which then become integrations).

6. The normal distribution in several variables and the central limit

theorem are discussed in sections 2.9 and 2.10.

Part in—Statistical Properties of Noise Current

I. The noise current is distributed normally. This has already been

discussed in section 1.6 for the shot-effect. It is discussed again in section

3.1 using the concepts introduced in Part II, and the assumption, used

throughout Part III, that the average value of the noise current I(i) is zero.

The probabiUty that I{t) lies between I and I -\- dl is

where ypn is the value of the correlation function, ^{t), of /(/) at r =

'/'o = lACO) = f wif) dj, (3.1-2)
Jo

w{f) being the power spectrum of I{t). i^o is the mean square value of

/(/), i.e., the r.m.s. value of /(/) is t/'o'^.

The characteristic function (ch. f.) of this distribution is

ave.e*"''" = exp-^%' (3.1-6)
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2. The probability that /(/) lies between h and 7i + dl, and /(/ + t)

lies between /a and I2 + dh when / is chosen at random is

where \pr is the correlation function 1^(7) of /(/):

^(r) = [ w{f) cos It/t df

The ch. f. for this distribution is

iiiliO+ivnt+r)
ave. e = exp —Y («^ + t)^) — lArWW

3. Tlie expected number of zeros per second of 7(0 is

rfw{f)df
Jo

(3.2-3)

(3.2-7)

1 [_rmY = 2

/ ^(/)tf/
JO

(3.3-11)

assuming convergence of the integrals. The primes denote differentiation

with respect to t:

For an ideal band-pass filter whose pass band extends from/o to fb the ex-

pected number of zeros per second is

n/2

2!;-'^—^1 (3.3-12)
L3/5 - /J

When/o is zero this becomes 1.155/6 and when/a is very nearly equal to

fb it approaches Jb -\- fa .

4. The problem of determining the distribution function for the length

of the interval between two successive zeros of I{i) seems to be quite diffi-

cult. In section 3.4 some related results are given which lead, in seme

circumstances, to approximations to the distribution. For example, for

an ideal narrow band-pass filter the probabiHty that the distance between

two successive zeros lies between t and t H- rfr is approximately

dr a

2 [1 + a\T - T,)1
213/2

'-*"..
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where

fb -fa

1
Tl =

f»-¥fa

fb and/o being the upper and lower cut-off frequencies.

5. In section 3.5 several multiple integrals which occur in the work of

Part III are discussed.

6. The distribution of the maxima of /(/) is discussed in section 3.6. The

expected number of maxima per second is

j f^^if)df

21 ^','i
( fMf)df

(3.6-6)

For a band-pass filter the expected number of maxima per second is

[^fl-AT
(3.6-7)

For a low-pass filter where/,, = this number is 0.775 fb .

The expected number of maxima per second lying above the hne /(/) = /i

is approximately, when /i is large,

^-i^nH y i[the expected number of zeros of / per second] (3.6-11)

where i^-o is the mean square value of /(/).

For a low-pass filter the probability that a maximum chosen at random
from the universe of maxima lies between I and I -\- dl is approximately,

when 7 is large,

V5^,^-„./= dl_
(3.6-9)

where

7. When we pass noise through a relatively narrow band-pass filter one

of the most noticeable features of an oscillogram of the output current is

its fluctuating envelope. In sections 3.7 and 3.8 some statistical properties

of this envelope, denoted by R or i^(/), are derived.

The probability that the envelope lies between R and R + dR is

R ^-R^mo

^0
dR (3.7-10)

-v^ mi^aiL'rtii'S^- Si«'i)Bt^^ Vul-ufHSiiisyiSSWilimis-iV^:^ JrHr, I
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where ^o is the mean square value of /(/). The probability that R{t) Ues

between Rx and Ri -\- dRi and at the same time R(t + r) lies between

R2 and i?2 + dR2 when / is chosen at random is obtained by multiplying

(3.7-13) by dRi dR^ . For an ideal band-pass filter, the expected number

of maxima of the envelope in one second is

.64n0{/b-/a) (3.8-15)

When R is large, say y > 2.5 where

R
y = --jj2, }pl"^ = r.m.s. value of /(/),

the probability that a maximum of the envelope, selected at random from

the universe of such maxima, Hes between R and R -\- dRis approximately

1.13(^-1).-'"' .4^

A curve for the corresponding probability density is shown for the range

< >> < 4. Curves which compare the distribution function of the maxima

of R with other distribution functions of the same type are also given.

8. In section 3.9 some information is given regarding the statistical

behavior of the random variable

:

E = / l\t) dt (3.9-1)

where h is chosen at random and I(t) is a noise current with the power

spectrum w(f) and the correlation function ^(t). The average value

mr of E is T^o and its standard deviation ct is given by (3.9-9). For a

relatively narrow band-pass filter

rrtwf 1

Mr Vn/b - fa)

when T(fb - /„) » 1. This follows from equation (3.9-10). An ex-

pression which is believed to approximate the distribution of E is given by

(3.9-20).

9. In section 3.10 the distribution of a noise current plus one or more

sinusoidal currents is discussed. For example, if / consists of two sine waves

plus noise

:

I = Pcos pt -j- Q cos qt -f Tk ,
(3.10-20)

where p and q are incommensurable and the r.m.s. value of the noise cur-

rent Zy is ^l'^, the probability density of the envelope R is

R f rURr)UPr)UQr)€-*''"'Ur (3.10-21)

where /o( ) is a Bessel function.
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Curves showing the probability density and distribution function of R,

when Q = 0, for various ratios of P/i.m.s. In are given.

10. In section 3.11 it is pointed out that the representations (2.8-1)

and (2.8-6) of the noise current as the sum of a great number of sinusoidal

components are not the only ones which may be used in deriving the results

given in the preceding sections of Part III. The shot effect representation

m = i; ^e - '*)
—00

studied in Part I may also be used.

Part IV—Noise Through Non-Linear Devices

1. Suppose that the power spectrum of the voltage V applied to the

square-law device

I = aV' (4.1-1)

is confined to a relatively narrow band. The total low-frequency output

current lu may be expressed as the sum

/,/ = U. + ///

'

(4.1-2)

where /dc is the d.c. component and !(/ is the variable component. When

none of the low-frequency band is eliminated (by audio frequency filters)

lU = "-^ (4.1-6)

where R is the envelope of V. If V is of the form

V = Vy -\- P cos pi -\- Q cos gt, (4.1-4)

where Vn is a noise voltage whose mean square value is ^o , then

/^ = a^ [^l + I^h + QVo + ^'] (4.1-16)

2. If instead of a square-law device we have a linear rectifier,

/ = /° ^<°
(42-1)

^ \aV, V>Q ^ ^

the total low-frequency output is

ia=~ (4.2-2)

'•..VjfcW.^-S :.-.
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When F is a sine wave plus noise, Fy + Pcos pt.

he = «(0"i^i(-^; 1; -*) (4-2-3)

• /S=4(^' + 2^o) (4.2-6)

where \Fi is a hypergeometric function and

_ i^ _ Ave. sine wave power . .,

2i^o Ave. noise power

When X is large

If V consists of two sine waves plus noise, Idc consists of a hypergeometric

function of two variables. The equations running from {A.1-9) to (4.2-lS)

are concerned with this case. About the only simple equation is

/S == ^ [2^0 •\-P'-\- Q'] (4.2-14)
IT

3. The expressions (4.1-6) and (4.2-2) for lit in terms of the envelope

R of V, namely

-2. -d ~,

are special cases of a more general result

Id = Ao(R) =~ ( F{iu)Jo{uR) du. (4.3-11)

In this expression JoiuR) is a Bessel function. The path of integration C
and the function F(iu) are chosen so that the relation between / and V may
be expressed as

/ = A / F{iu)e'^'' du. (4A-1)
2t Jc

A table giving F(iu) and C for a number of common non-linear devices is

shown in Appendix 4A.

If this relation is used to study the biased linear rectifier.

/ 0, V <B
\V - B, V > B

..^^K.^WiJ^KlifiWi
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for the case in which V is Vn -\- P cos pt, we find

2 IT 2ttP

_ „ , (4.3-17)

when P ;S>
I
JB

I
,
/* ^ fo where V'o is the mean square value of Vn .

4. When V is confined to a relatively narrow band and there are no
audio-frequency filters, the probabiUty density and all the associated sta-

tistical properties of la may be obtained by expressing Id as a function

of the envelope i? of K and then using the probability density of R. When
V is Fjv + -P cos pt + Q cos qt this probability density is given by the in-

tegral, (3.10-21) (which is the integral containing three Bessel functions

stated in the above summary of Part III). When V consists of three sine

'

waves plusjioiEe there are four A's in the integrand, and so on. Expres-

sions for R" when R has the above distribution are given by equations

(3.10-25) and (3.10-27).

When audio-frequency filters remove part of the low-frequency band the

statistical properties, except the mean square value, of the resulting cur-

rent are hard to compute. In section 4.3 it is shown that as the output band
is chosen narrower and narrower, the statistical properties of the output
current approach those of a random noise current.

5. The sections in Part IV from 4.4 onward are concerned with the

problem: Given a non-linear device and an input voltage consisting of noise

alone or of a signal plus noise. What is the power spectrum of the output?

A survey of the methods available for the solution of this problem is given

in section 4.4.

6. When a noise voltage I'V with the power spectrum w(/) is appHed to

the square-law device

/ = aV'' (4.1^1)

the power spectrum of the output current / is, when/ ?>£ 0,

/+00
w{x)wij ~ x)dx (4.5-5)

00

where wi—x) is defined to equal w{x). The power spectrum of / when V
is either P cos pt -f Vn or

Q{\ -f k cos pt) cos qt -f- Vn

is considered in the portion of section 4.5 containing equations (4.5-10) to

(4.5-17).

Mltiiimi*^umbmJ^at.t̂ ma îf%ii:̂ ^itUiU^':i^^t«iiS^-iAt^ • Tife.-=t=:^s--,uK--<ii»^^.>iMMw:^ tiAi^
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7. A method discovered independently by Van Vleck and North shows

that the correlation function *(t) of the output current for an unbiased

linear rectifier is

^„=| + ^.^[-J,_i;^;g (4.7-6)

where the input voltage is Vn . The correlation function ^(t) of Vy is

denoted by ^r and the mean square value of Vn is ^o . The power spectrum

Wif) of / may be obtained from

WU) = 4 [ *(t) cos 2vfT dr (4.6-1)

by expanding the hypergeometric function and integrating termwise using

G„(/) = [ ^; cos 2t/t dr. (4C-1)
JQ

Appendix 4C is devoted to the problem of evaluating the integral for G„(/).

8. Another method of obtaining the correlation function i/'(t) of /, termed

the "characteristic function method," is explained in section 4.8. It is

illustrated in section 4.9 where formulas for *(t) and W(J) are developed

when the voltage P cos pt + Vn is applied to a general non-Unear device.

9. Several miscellaneous results are given in section 4.10. The char-

acteristic function method is used to obtain the correlation function for a

square-law device. The general formulas of section 4.9 are applied to the

case of a v^ law rectifier when the input noise spectrum has a normal law

distribution. Some remarks are also made concerning the audio-frequency

output of a Unear rectifier when the input voltage V is

Q{1 -\- r cos pt) cos gt-\- Vn.

10. A discussion of the hypergeometric function iFi{a; c; x), which often

occurs in problems concerning a sine wave plus noise, is given in

Appendix 4B.

PART I

THE SHOT EFFECT

The shot effect in vacuum tubes is a typical example of noise. It is due

to fluctuations in the intensity of the stream of electrons flowing from the

cathode to the anode. Here we analyze a simplified form of the shot effect.
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1.1 The Probability of Exactly K Electrons Arriving at the
Anode in Time T

The fluctuations in the electron stream are supposed to be random. We
shall treat this randomness as follows. We count the number of electrons

flowing in a long interval of time T measured in seconds. Suppose there

are A"i . Repeating this counting process for many intervals all of length

T gives a set of numbers Kz , K3 • • • Km where M is the total number of

intervals. The average number »-, of electrons per second is defined as

tt-*ta Mi

where we assume that this limit exists. As M is increased with T being

held fixed some of the K's will have the same value. In fact, as M increases

the number of it's having any particular value will tend to increase. This

of course is based on the assumption that the electron stream is a steady

flow upon which random fluctuations are superposed. The probability of

getting K electrons in a given trial is defined as

,„, _ _ . Number of trials giving exactly K electrons , .

jtf-toe M
Of course p{K) also depends upon T. We assume that the random-

ness of the electron stream is such than the probability that an electron

will arrive at the anode in the interval (/, t + A/) is vM where A/ is

such that vM « 1, and that this probabiUty is independent of what has

happened before time / or will happen after time / + A/.

This assumption is sufficient to determine the expression for p{K) which is

pw = ^4^'"" ^^-^'^^

This is the "law of small probabilities" given by Poisson. One method

of derivation sometimes used can be readily illustrated for the case A^ = 0.

T
Thus, divide the interval, (0, T) into M intervals each of length ^ = rrz..M
A/ is taken so small that viid is much less than unity. (This is the "small

probability" that an electron will arrive in the interval A/). The prob-

ability that an electron will not arrive in the first sub-interval is (1 — v^t).

The probability that one will not arrive in either the first or the second

sub-interval is (1 — v^t) . The probability that an electron will not arrive

in any of the M intervals is (1 — vdJ)", Replacing M by T/M and letting

A/^ gives
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The expressions for ^(1), p(2), • • p{K) may be derived in a somewhat

similar fashion.

1.2 Statement of Campbell's Theorem

Suppose that the arrival of an electron at the anode at time / = produces

an effect F(t) at some point in the output circuit. If the output circuit

is such that the effects of the various electrons add linearly, the total effect

at time / due to all the electrons is

m = T, Fit- fk) (1.2-1)

where thfe k^^ electron arrives at th and the series is assumed to converge.

Campbell's theorem^ states that the average value of I{t) is

7(0 = .' f'^ F{t)di (1.2-2)
J- BO

and the mean square value of the fluctuation about this average is

J— 00

where v is the average number of electrons arriving per second.

The statement of the theorem is not precise until we define what we mean

by "average". From the form of the equations the reader might be tempted

to think of a time average; e.g. the value

Limi f I{t)dt (1.2-4)
3-.00 i Jo

However, in the proof of the theorem the average is generally taken over

a great many intervals of length T with t held constant. The process is

somewhat similar to that employed in (1.1) and in order to make it clear

we take the case of I{t) for illustration. We observe I{t) fcr many, say M^

intervals each of length T where T is large in comparison with the interval

over which the effect F{t) of the arrival of a single electron is appreciable.

Let J{t') be the value of /(/), t' seconds after the beginning of the w* in-

terval. /' is equal to / plus a constant depending upon the beginning time

of the interval. We put the subscript in front because we wish to reserve

the usual place for another subscript later on. The value of I[t') is then

defined as

7(0 = Limit i y{t') + a{t') + - • + Ml{t')] (1.2-5)

and this limit is assumed to exist. The mean square value of the fluctua-

tion of /(/') is defined in much the same way.

* Ptoc. Camh. Phil. Soc. IS (1909), 117-136, 310-328. Our proof is similar to one given

by J. M. Whittaker, Proc. Camb. Phil. Soc. 33 (1937), 451-458.
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Actually, as the equations (1.2-2) and (1.2-3) of Campbell's theorem
show, these averages and all the similar averages encountered later turn

out to be independent of the time. When this is true and when the M in-

tervals in (1.2-5) are taken consecutively the time average (1.2-4) and the

average (1.2-5) become the same. To show this we multiply both sides of

(1.2-5) by dt' and integrate from to T:

W) = Lmit ^T^llf m/(/0 dl'

, .ur (1-2-6)

= Limit -~ / /(O di
.U-a) Ml Jo

and this is the same as the time average (1.2-4) if the latter limit exists.

1.3 Proof of Campbell's Theorem

Consider the case in which exactly K electrons arrive at the anode in an
interval of length T. Before the interval starts, we think of these K elec-

trons as fated to arrive in the interval (0, T) but any particular electron is

just as likely to arrive at one time as any other time. We shall number
these fated electrons from one to K for purposes of identification but it is to

be emphasized that the numbering has nothing to do with the order of ar-

rival. Thus, if ik be the time of arrival of electron number k, the probability

that tk lies in the interval (i, i -|- dl) is dt/T.

We take T to be very large compared with the range of values of / for

which F(t) is appreciably different from zero. In physical appHcations

such a range usually exists and we shall call it A even though it is not very

definite. Then, when exactly K electrons arrive in the interval (0, T) the

effect is approximately

K

!kU) = 'EF(t- k) (1.3-1)
k-i

the degree of approximation being very good over all of the interval except

within A of the end points.

Suppose we examine a large number M of intervals of length T. The
number having exactly K arrivals will be, to a first approximation M p{K)
where p{K) is given by (1.1-3). For a fixed value of t and for each interval

having K arrivals, /k(/) will have a definite value. As Af^ oo
, the average

value of the IkW^, obtained by averaging over the intervals, is

Jo I Jo 1 k-^l

= E/ tF(/-4)
k-i Jo I

rtlMll1'';imVK^^''^l^rl^n^k^»l^f1^^"fl*1flfafi*''T^'r^^hfV '

-

r.--iiPsttMu^i^-^^^'KfC:iiSi'4^iiAuk .^..u.ii^dii.:-^''-*^ •---'-
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and if A < / < r — A, we have effectively

7:(^)^f[y(i)di (1.3-3)

If we now average I(t) over all of the M intervals instead of only over

those having K arrivals, we get, as M" —* oo

,

7(0 = E P(K)T:iJ)

frkT Kl 1« ^^

= V [
"

F{t) dt (1.3-4)
J- 00

and this proves the first part of the theorem. We have used this rather

elaborate proof to prove the relatively simple (1.3-4) in order to illustrate a

method which may be used to prove more complicated results. Of course,

(1.3-4) could be established by noting that the integral is the average value

of the effect produced by one arrival, the average being taken over one

second, and that v is the average number of arrivals per second.

In order to prove the second part, (1.2-3) of Campbell's theorem we first

compute P{t) and use

(/(o - m? = iHi)-2mm + Wf
= PU)~ Wf (1-3-s)

From the definition (1.3-1) of /«(/),

lUi) = E E ^(' - iicWt - O

Averaging this over all values oihjz, ••Ik with t held fixed as in (1.3-2),

The multiple integral has two different values. If * = m its value is

and if A 7^ m its value is

r-T J, rT

r..-.)ff.(.-c)^"
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Counting up the number of terms in the double sum shows that there are K
of them having the first value and K'^ —A" having the second value. Hence,

if A < / < r - A we have

/Iw = f /7 ^^'^ '^^ + ^^^^ [C ^^'^ ^'

Averaging over all the intervals instead of only those having K arrivals

gives

J- 00

where the summation with respect to A' is performed as in (1.3-4), and after

summation the value (1.3-4) for /(/) is used. Comparison with (1.3-5)

establishes the second part of Campbell's theorem.

1.4 The Distribution of I{t)

When certain conditions are satisfied the proportion of time which /(/)

spends in the range I, I -\- dl is P(I)dI where, as v ^ oo
, the probability

density P{I) approaches

^ .-"-^'^'-1
(1.4-1)

where /is the average of /(/) given by (1.2-2) and the square of the standard

deviation o-j, i.e. the variance of I{t), is given by (1.2-3). This normal

distribution is the one which would be expected by virtue of the "central

limit theorem" in probability. This states that, under suitable conditions,

the distribution of the sum of a large number of random variables tends

toward a normal distribution whose variance is the sum of the variances

of the individual variables. Similarly the average of the normal distribu-

tion is the sum of the averages of the individual variables.

So far, we have been speaking of the limiting form of the probabiHty

density P{I). It is possible to write down an explicit expression for P{I),

which, however, is quite involved. From this expression the limiting form
may be obtained. We now obtain this expression. In line with the dis-

cussion given of Campbell's theorem, we seek the probability density P(I)

of the values of /(/} observed at / seconds from the beginning of each of a

large number, M, of intervals, each of length T.

thu i-^H wij"
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Probability that 7(0 lies in range (7, 1 + dl)

= ^ (Probability of exactly iC arrivals) X

(Probability that if there are exactly

A' arrivals, Uit) lies in (7, 7 + dl)).

Denoting the last probability in the summation by PK{I)dI, using notation

introduced earlier, and cancelling out the factor dl gives

P{I) = f: PWPkU) (1.4-2)

We shall compute Pk{I) by the method of "characteristic functions"' from

the definition

K

lK(t) = TF{t-h) (1.3-1)

of IKit). The method will be used in its simplest form: the probability that

the sum

Xi -\- xz -\- • { Xk

of K independent random variables lies between X and X + rfX is

dX— I
"

e-''"' n (average value of e"'") du (1.4-3)
27r J-ao k=l

The average value of e''"", i.e., the characteristic function of the distribution

of Xk , is obtained by averaging over the values of Xk . Although this is the

simplest form of the method it is also the least general in that the integral

does not converge for some important cases. The distribution which gives

a probability of h that Xk = - 1 and ^ that xt = ^-1 is an example of such a

case. However, we may still use (1.4r-3) formally in such cases by employ-

ing the relation

L
e-""'du = 27r5(a) (1.4-4)

where 5(a) is zero except at a = where it is infinite and its integral from

a = — etoa= +eis unity where e > 0.

When we identify Xk with F{t - h) we see that the average value of

IfcU -

e IS

1 f^
i / exp [iuFit - tk)] dtk
T Ja

' The essentials of this method are due to Laplace. A few remarks on its history are

given by E. C. Molina, Bull. Amsr. Math. Soc, 36 (1930), pp. 369-392. An account of

the method may be found in any one of several texts on probability theory. We mention

"Random Variables and Probabihty Distributians," by H. CramSr, Camb. Tract m
Math and Math, Phys. No. 36 (1937), Chap. TV. Also "Introduction to Matheraaticai

Probability," by J. V. Uspensky, McGraw-HiU (1937), pages 240, 264, and 271-278.
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All of the K characteristic functions are the same and hence, from (1.4-3),

PK(I)dI is

Although in deriving this relation we have taken iC > 0, it also holds for

K = (provided we use (1.4r4)). In this case Po{T) = 5(1), because 7=0
when no electrons arrive.

Inserting our expression for Pk(I) and the expression (1.1-3) for p(K)
in (1.4-2) and performing the summation gives

-\- V J exp [iuF(t - t)] dTJdu (1.4-5)

The first exponential may be simplified somewhat. Using

vT = V I dr

permits us to write

-vT + V \ exp {iuF{t - t)] rfr = v / (exp [iiiF{t - t)] - 1) dr
Jo JO

Suppose that A < / < T — A where A is the range discussed in connection

with equation (1.3-1). Taking
|
F(/ - t)

|

= for
[
/ - t

| > A then

enables us to write the last expression as

u f [e'"""' ^l]dt (1.4-6)

Placing this in (1.4-5) yields the required expression for P(T):

W) = ^ / exp (^-ilu + V j^ [e*"^'" - 1] dt\dii (1.4-7)

An idea of the conditions under which the normal law (1.4-1) is ap-

proached may be obtained from (1.4-7) by expanding (1.4-6) in powers of

u and determining when the terms involving «^ and higher powers of «
may be neglected. This is taken up for a slightly more general form of

current in section 1.6.
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1.5 Extension of Campbell's Theorem

In section 1.2 we have stated Campbell's theorem. Here we shall give

an extension of it. In place of the expression (1.2-1) for the /(/) of the shot

effect we shall deal with the current

7(0 = E a,F(t--t,) (1.5-1)

where F{t) is the same sort of function as before and where • • ai , (h ,

••

at , - are independent random variables all having the same distribution.

It is assumed that all of the moments a" exist, and that the events occur at

random

The extension states that the «th semi-invariant of the probability density

P{I) of /, where I is given by (1.5-1), is

\.= va- I mWdt (1.5-2)

where v is the expected number of events per second. The semi-invariants

of a distribution are defined as the coefficients in the expansion

log. (ave. ."") = i: ^ {iuT + oiu^) (1.5-3)
n— 1 Ml

i.e. as the coefficients in the expansion of the logarithm of the characteristic

function. The X's are related to the moments of the distribution. Thus if

mi , ma , denote the first, second • • • moments about zero we have

ave. ."" = 1 + i: -: (*'«)" + "(«")
n-l Ml

By combining this relation with the one defining the X's it may be shown that

/ = mi = Xi

/2 = ma = Xa + XiWi

73 = wa = Xs -f 2X2mi + Xima

It follows that Xi = / and Xa = ave. (/ - if. Hence (1.5-2) yields the

original statement of Campbell's theorem when we set n equal to one and

two and also take all the o's to be unity.

The extension follows almost at once from the generalization of expression

(1.4^7) for the probabiUty density P{I). By proceeding as in section 1.4

and identifying Xk with akF{t - tk) we see that

ave. e"*" = i f q{a) da [ exp [iuaF{t - Q] dh
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where qia) is the probability density function for the a's. It turns out that

the probability density P(I) of / as defined by (1.5-1) is

P{r) = ^ /^ exp (-ilu + ,; jf^ q{a) da

The logarithm of the characteristic function of P(l) is, from (1.5-4),

V [ q{a)da [ [e"""'" - l]di

n=l «I J-00 J-w
(f^

Comparison with the series (1.5-3) defining the semi-invariants gives the

extension of Campbell's theorem stated by (1.5-2).

Other extensions of Campbell's theorem may be made. For example,

suppose in the expression (1.5-1) for I{t) that h, h ,
• • tk, • while still

random variables, are no longer necessarily distributed according to the

laws assumed above. Suppose now that the probability density p(x) is

given where x is the interval between two successive events:

h = h-\-xi (1.5-5)

ii = h -\- x^ = ti -h xi -\- X3

and so on. For the case treated above

p(x) = ve-"\ (1.5-6)

We assume that the expected number of events per second is still v.

Also we take the special, but important, case for which

F{t) = 0, t <0 "

(1.5-7)

F(t) = e-°\ t > 0.

For a very long interval extending from t = ti to t = T + ^1 inside of which

there are exactly K events we have, if t is not near the ends of the interval,

/(/) = aiF(t - h) + a^FQ. - h - x,) -\

+ ajc+i-P(^ — h— xi--- ~ Xk)

«= axF{t') + o*F(/' - «i) + • + a^+iF(/' - xi Xk)

i^*i-^-i-M-X ___-irhi«»Ui.= r-7V---TtffW:'j».-
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where q(a) is the probability density function for the a's. It turns out that

the probability density P(I) of / as defined by (1.5-1) is

P{I) = -z- I
exp ( —ilu -\- V I q(a) da

2t J-bo \ J-aa

j^""" [g-af(« _ l]jA(^„ (1.5-4)

The logarithm of the characteristic function of P{2) is, from (1.5-4),

V [
"
g(a)da ( [e*""''"' - l]dt

dt

Comparison with the series (1.5-3) defining the semi-invariants gives the

extension of Campbell's theorem stated by (1.5-2).

Other extensions of Campbell's theorem may be made. For example,

suppose in the expression (1.5-1) for /(/) that h,h, h, • while still

random variables, are no longer necessarily distributed according to the

laws assumed above. Suppose now that the probability density p(x) is

given where x is the interval between two successive events

:

h = h-\- xi (1.5-5)

h = h-h X2 = h-h Xi-\- X2

and so on. For the case treated above

p(x) = ve~". (1.5-6)

We assume that the expected number of events per second is still v.

Also we take the special, but important, case for which

F(t) =0, i <0 (1.5-7)

F(t) = e~°\ t > 0.

For a very long interval extending from t = titot = T -^ ti inside of which

there are exactly K events we have, if t is not near the ends of the interval,

/(/) = aiF{t - h) + azFit - h - x{) ]

+ aK+iF(t — h — Xi • • — Xk)

= aiF{t') + asFit' - xi) -\ + aK+iF(t' - xi x^)

_--.-'j^ 'ji^^P^.^-j^^^ *^- *gWt*i".i^ -Pj^-V* -^-' ^^ .-_',/ -t ^r- *
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I\l) = alF\t') + a\F\t' - r^i) + • • + aUiP\i' - Xi xk)

+ 2aia2F(i')F{l' - xi) -\ + 2aiaK+iF(t')F{t' - xi Xk)

+ 2a2azF{t' - Xi)F{t' - xi - X2) -\ + •

where t' = t — ti. If we integrate /\7) over the entire interval < i' < T

and drop the primes we get approximately

/ I\t)dt = (ol + • + aUi)<p{G)
Ja

-\- 2aia2tpixi) + 2aia3(p(xi + .r2) + • + 2aiaii:4.i^(a;i + • • + ^k)

4- 20203^(3^2) + ••• + 4- 2aKaK^itp(xK)

where

^(x) =
I F(i)F{t - x) d%

When we divide both sides by T and consider K and T to be very large,

f
°'+"^+°'"

>>(0)'=mV(0)

1 TT

r;[oia2^Ca:i) +^a3vC*2) + +«kOk+iv'(*k)I = ^ average 0^0^+1 ^fyO

= v(^ I <f(x)p(x) dx
Jo

1 TT — 1

^ [aia^tpixi -\- X2) + ••] = —p— ave. akak+$tp(xk + Xk+i)

= vd^ j dxi I
dx2p(xi)p(x'i)>fixi + Xi)

Jo Jo

Consequently

l
rT

P{t) =Lim- f(t)di
T-teo I Jo

= mVCO) + 2va^
J

p{x)ip{x) dx

+ / dxi \ dx2p(xi)p{x2)(p(xi + X2) +
Jo J<i

For our special exponential form (1.5-7) for F{i),

^(«) = 2^
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and the multiple integrals occurring in the expression for P{l) may be written

in terms of powers of

= [ p{x)e-"dx (1.5-8)

Thus

and since

we have

' .0

2ar-{l) = va? + 2a V ^1-9

F{t) at = va/a

m-m'-i + {;^)'[~^,-q a-^-")
2a

Equations (1.5-8) and (1.5-9) give us an extension of Campbell's theorem

subject to the restrictions discussed in connection with equations (1.5-5)

and (1.5-7). Other generalizations have been made* but we shall leave the

subject here. The reader may find it interesting to verify that (1.5-9)

gives the correct answer when p{x) is given by (1.5-6), and also to investi-

gate the case when the events are spaced equally.

1.6 Approach or DisTRiBrTioN ov I to a Normal Law

In section 1.5 we saw that the probability density P{1) of the noise current

/ may be expressed formally as

P(/) + J_ r^ cxp\-iTu + f: (iuy\Jn\\du (1.6-1)
2ir J-,0 L "^^ -1

where \n is the «th semi-invariant given by (1.5-2). By setting

Ai = tr

7 - X, 7-7
X — (1.6-2)

J See E. N. Rowland, Proc. Camb. Phil. Soc. 32 (1936), 580-597. He extends the

theorem to the case where there are two functions instead of a single one, which we here

denote by lit). According to a review in the Zentralblatt fur Math., 19, p. 224, Khint-

chine in the Bull. Acad. Sci. URSS, s;r. Math. Nr. 3 (1938), 313-322, has continued and

made precise the earlier work of Rowland.

.. -i^-**i--_Jr<-- -..*«6i>'ii"=i; I'ft*^**-""'*"'- -*>fci'^ I'-v*!'*" : .
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expanding
,

exp i; {iu)"\../v\

as a power series in w, integrating termwise using

and finally collecting terms according to their order in powers of v~^'^, gives

n/T\ -1 Wf \ XaO" (3)/ \ [ I Xiff (4)/ , , X3O" (6)/ \ I ,

(1.6-3)

The first term is f)(v~^ ), the second term is 0(f~^), and the term within

brackets is Oiv"^ '). This is Edgeworth's series. The first term gives the

normal distribution and the remaining terms show how this distribution is

approached as j' —* =»

.

1.7 The Fourier Components of I(i)

In some analytical work noise current is represented as

HO = "2 + 2^^
(a. cos— + i„ sm -^1 (1./-1)

where at a suitable place in the work Tand jVare allowed to become infinite.

The coefficients a„ and bn , I < n < N, are regarded as independent random

variables distributed about zero according to a normal law..

It appears that the association of (1.7-1) with a sequence of disturbances

occurring at random goes back many years. Rayleigh^ and Gouy suggested

that black-body radiation and white light might both he regarded as se-

quences of irregularly distributed impulses.

Einstein and von Laue have discussed the normal distribution of the

coefficients in (1.7-1) when it is used to represent black-body radiation, this

radiation being the resultant produced by a great many independent os-

' See, [or example, pp. 86-87, in "Random Variables and Probability Distributions"

bv H. Cramer, Cambridge Tract No. 36 (1937).
"

''Phil. Mag. Ser. 5, Vol. 27 (1SS9) pp. -160-469.
I A. Einstein and L. Hnpf, Ann. d. Pkvsik 3i (1910) pp. 1095-1115.

M. V. Laue, Ann. d. Physik 47 (1915) pp. 853-878.

A. Einstein, Ann. d. Physik 47 (1915) pp. 879-885.

M. V. Laue, A7m. d. Physik 48 (1915) pp. 668-680.

I am indebted to Prof. Goudsmit for these references.

-^
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cillators. Some argument arose as to whether the coefficients in (1.7-1)

were statistically independent or not. It was finally decided that they

are independent.

The shot effect current has been represented in this way by Schottky.

The Fourier series representation has been discussed by H. Nyquist^ and

also by Goudsmit and Weiss. Remarks made by A. Schuster'" are equiv-

alent to the statement that a„ and b^ are distributed normally.

In view of this wealth of information on the subject it may appear super-

fluous to say anything about it. However, for the sake of completeness,

we shall outUne the thoughts which lead to (1.7-1).

In line with our usual approach to the shot effect, we suppose that exactly

A' electrons arrive during the interval (0, T), so that the noise current for

the interval is

IkU) = E F(/ - h) (1.7-2)
1=1

The coefficients in the Fourier series expansion of 7^(0 over the interval

(0, 7") are a„K and bnK where

r . 2wnn
dt

2 \

QnK - ibnK = ^ £ / F(i - /fc) BXp
T t=i Jo

-||:£"f(oe..p[-i'-^^/ + /.)]rf/

= i?„fi-"'^"i:
«-*"'"

(1.7-3)

In this expression

q - 27r/t

-= C„ ~iS. = j,[^ me-'"""

(1.7-4)

H.e-'"- = C„ - 75. = ^ F(/)f-'^""' dt

In the earlier sections the arrival times h , t2 , Ik were regarded as A'

indejiendent random variable each distributed uniformly over the interval

(0, T). Hence the 5a's may be regarded as random variables distributed

uniformly over the interval to 2r.

Incidentally, it will be noted that in (1.7-3) there occurs the sum of A
randomly oriented unit vectors. When K becomes very large, as it does

»Aiiii. d. Physik, 57 (191S] pp. 541-567.
^ Unpublished Memoratuium, "Fluctuations in Vacuum Tube Noise and the Like,"

March 17, 1932.

^"Investigation of Hidden Periodicities, Terrestrial Magnetism, 3 (1898), pp. 13-41.

See especially propositions 1 and 2 on page 26 of Schuster's paper.

oWi^'Wtftfe • M«rMiMHtiti^>^S^'.fT^''-ati£,.tii tij
'

iaiaiiiiitirf^MTra^WMi^»U*A^Mi«<;^^MWi<i«i^ r ^-.^^^ *
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when c —* «> , it is known that the real and in^aginary parts of this sum are

random variables, which tend to become independent and normally dis-

tributed about zero. This suggests the manner in which the normal dis-

tribution of the coefficients arises. Averaging over the fit's in (1.7-3) gives

when w >

d.K = 5„^ = (1.7-5)

Some further algebra gives

flnK = 0„K ~ — Kn
2 (1.7-6)

where n 9^ m and n,m > 0.

So far, we have been considering the case of exactly K arrivals in our

interval of length T. Now we pass to the general case of any number of

arrivals by making use of formulas analogous to

A-O

as has been done in section 1.3. Thus, for « > 0,

On = 5n =

"T TJ VT ri2 2 /I - o\
a,. = ft„ = Y i?n = ff„ (1.7-8)

a^bn. = a,^a,n = h^b^ = 0, 11 ?^ m

In the second hne we have used a„ to denote the standard deviation of an

and bn We may put the expression for fl-„ in a somewhat different form

by writing

/. = ^ = nAf, A/ =
^

(1.7-9)

where /„ is the frequency of the wth component. Using (1.7-4),

2
ffn = 2^A/| [ F(/)e^"'^"'

J— 00

dt (1.7-10)

Thus, cTn is proportional to v/T.

The probability density function P(ai ,
• 0^ , 61 , i.v) for the 2N co-

efficients, ai , • ay , bi ,
•

bfii may be derived in much the same fashion

as was the probabiUty density of the noise current in section 1.4. Here N
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is arbitrary but fixed. The expression analogous to (1.4-5) is the 2N fold

integral

P(a, , .
, ftv) = (2^)-^'^ [^ du,--- £" dv, (1.7-11)

exp {—iiaiUi + • + hsVs) — cT + vTE\

where

E = — r dd exp \i E (un C„ + p„ 5„) cos nd + (r„ Cn - «n 5„) sin nO
Ztt Jo L "-1 -•

(1.7-12)

in which C„ - i5„ is defined as the Fourier transform (1.7-4) of F(t).

The next step is to show that (1.7-U) approaches a normal law in 2N di-

mensions as v -» 00 . This appears to be quite involved. It will be noted

that the integrand in the integral defining E is composed of N factors of the

form

exp [ipn cos {nO — i/'„)]

= MPn) + 2i cos {ne - ^rdJiM - 2 cos {2ne - 2^„)72(p„) H

where

pl = (ul + vlXCl + Si) = ^^aliiil + vl).

As r becomes large, it turns out that the integral (1.7-11) for the prob-

ability density obtains most of its contributions from small values of u and v.

By substituting the product of the Bessel function series in the integral for

E and integrating we find

£ = n UPn) + ^ + 5 + C

where A is the sum of products such as

-2i cos {^k^( - ^t - H)Jiipk)Ji(pdJi(pk+t) times N - 3 A's

in which < k < Undl < k -\- 1 < N. Similarly B is the sum of products

of the form

-2i cos {il^2k
- 2\l/k)Ji(pik)J2{pk) times iV - 2 /o's

C consists of terms which give fourth and higher powers in w and v. There

are roughly iVV^ terms of form A and N/2 terms of form B.

Expanding the Bessel functions, neglecting all powers above the third and

---w"4*;- '-^'
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proceeding as in section 1.4, will give us the normal distribution plus the first

correction term. It is rather a messy affair. An idea of how it looks may-

be obtained by taking the special case in which F{i) is an even function cf /

and neglecting terms of type B. Then

P(oi
,

a^
, ^ ,

• • i;v) = (1 + 7/) n T- (1.7-12)
2x0-

„

where

n = {2vT)-"^ S [xk+t{xkxt - yuyt) + 2 ykUynyt] (1.7-13) i

k.t

and the summation extends over 2 < k }- I < N with k < I.

It is seen that if T and N are held constant, the correction term i; ap- ^j

proaches zero as v becomes very targe. A very rough idea of the magnitude

of Tj may be obtained by assuming that unity is a representative value of the

x's and y's. Further assuming that there are A'^^ terms in the summation

each one of which may be positive or negative suggests that magnitude of

the sum is of the order of iV. Hence we might expect to find that tj is of

the order of N(2vTy^'\

PART II >

POWER SPECTRA AND CORRELATION FUNCTIONS

2.0 Introduction

A theory for analyzing functions of time, t, which do not die down and
j

which remain finite as t approaches infinity has gradually been developed J

over the last sixty years. A few words of its history together with an ex-

tensive bibhography are given by N. Wiener in his paper on "Generalized
:

Harmonic Analysis". G. Gouy, Lord Rayleigh and A. Schuster were led

to study this problem in their investigations of such things as white light

and noise. Schuster invented the "periodogram" method of analysis which

has as its object the discovery of any periodicities hidden in a continuous i

curve representing meteorological or economic data.
I

" Ada Math., Vol. 55, pp. 117-258 (1930). See also "Harmonic Analysis of Irregular
Motion," Jour. Math, and Phys. S (1926) pp. 99-189.

,

'*The periodogram was first introduced by Schuster in reference 10 cited In Section
1.7. He later modified its definition in the Trans. Camb. Phil. Soc. 18 (1903), pp. 107-
135, and still later redefined it in "The Periodogram and its Optical Analogy," Proc. Roy.
Soc, London, Ser. A, 77 (1906) pp. 136-140. In its final form the periodogram is equiva-
lent to \w{J), where w(j) is the power spectrum defined in Section 2.1, plotted as a func-

tion of the period T = {2irf)-K
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The correlation function, which turns cut to be a very useful tool, appar-

ently was introduced by G. I. Taylor.^' Recently it has been used by quite

a few writers" in the mathematical theory of turbulence.

In section 2.1 the power spectrum and correlation function of a specific

function, such as one given by a curve extending to t = « , are defined by

equations (2.1-3) and (2.1^) respectively. That they are related by the

Fourier inversion formulae (2.1-5) and (2.1-6) is merely stated; the dis-

cussion of the method of proof being delayed until sections 2.3 and 2.4. In

section 2.3 a discussion based on Fourier series is given and in section 2.4 a

parallel treatment starting with Parseval's integral theorem is set forth.

The results as given in section 2.1 have to be supplemented when the func-

tion being analyzed contains a d.c. or periodic components. This is taken

up in section 2.2.

The first four sections deal with the analysis of a specific function of /.

However, most of the appHcations are made to functions which behave as

though tliey are more or less random in character. In the mathematical

analysis this randomness is introduced by assuming the function of t to be

also a function of suitable parameters, and then letting these parameters be

random variables. This question is taken up in section 2.5. In section 2.6

the results of 2.5 are applied to determine the average power spectrum and

the average correlation function of the shot effect current. The same thing

is done in 2.7 for a flat top wave, the tops (and bottoms) being of random

length. The case in which the intervals are of equal length but the sign

of the wave is random is also discussed in 2.7. The representation of the

noise current as a trigonometrical series with random variable coefficients

is taken up in 2.8. The last two sections 2.9 and 2.10 are devoted to prob-

ability theory. The normal law and the central hmit theorem, respectively,

are discussed.

2.1 Some Results of Generalized Harmonic Analysis

We shall first state the results which we need, and then show that they are

plausible by methods which are heuristic rather than rigorous. Suppose

that /(/) is one of the functions mentioned above. We may think of it as

being specified by a curve extending from / = — oo to / = «>. /(/) may

be regarded as ccmpoEed of a great number of sinusoidal components whose

frequencies range from to + «. It does not necessarily have to be a noise

current, but if we think of it as such, then, in flowing through a resistance of

one ohm it will dissipate a certain average amount of power, say p watts.

" Diffusion by Continuous Movements, Proc. Loud. Math. Soc, Ser. 2, 20, pp. 196-

212 (1920).
" See the text "Modern Developments in Fluid Dynamics" edited by S. Goldstein,

Oxford (1938).

I'ai^^yfc-n'Tyr ---ir-H"^- -«T-V|-*-^-'-t^i^^fa^a^' -ih'^S*i&^ r.^^Sk^tAT^mMi •^i.^.^utilhfni.'.^-i'Mt.ii^tH'
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That portion of p arising from the components having frequencies between

/and/+ (// will be denoted by w(f)dfy and consequently

= fw(f)df (2.1-1)

Since w(f) is the spectrum of the average power we shall call it the "power

spectrum" of /(/). It has the dimensions of energy and on this account is

frequently called the "energy-frequency spectrum" of 7(0. A mathematical

formulation of this discussion leads to a clear cut definition of w(J).

Let $(/) be a function of /, which is zero outside the interval <t < T and

is equal to I(t) inside the interval. Its spectrum S(f) is given by

Sif) = ( Iii)e-"'^'dt (2.1-2)
Jo

The spectrum of the power, w{f), is defined as

w{f) = Limit ?i^^' (2.1-3)

where we consider only values of / > and assume that this limit exists.

This is substantially the definition of w(f) given by J. R. Carson and is

useful when 7(0 has no periodic terras and no d.c. component. In the

latter case (2.1-3) must either be supplemented by additional definitions or

else a somewhat different method of approach used. These questions will

be discussed in section 2,2.

The correlation function ^(t) of /(/) is defined by the limit

^(r) = Lin:it ^ [ I{t)I{t + t) di (2.1-4)
r—ao T Jo

which is assumed to exist, ^(r) is closely related to the correlation coefli-

cients used in statistical theory to measure the correlation of two random

variables. In the present case the value of 7(0 at time / is one variable and

its value at a different time i + t is the other variable.

The spectrum of the power wif) and the correlation function iP{t) are

related by the equations

Ml) = 4 /" .^(t) cos lirfrdT (2.1-5)
Jo

^(r) = f w{f) cos lirfr df (2.1-6)
Jo

1^ "The Statistical Energy-Frequency Spectrum of Random Disturbances," B.S.TJ.,

Vol. 10, pp. 374-381 (1931).

1
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It is seen that i/'(t) is an even function of t and that

^{0) = p (2.1-7)

When either ^(r) or w(f) is known the other may be obtained provided the

corresponding integral converges.

2.2 Power Spectrum for D.C. and Periodic Components

As mentioned in section 2.1, when 7(0 has a d.c. or a periodic com-

ponent the limit in the definition (2.1-3) for w(f) does not exist for /equal

to zero or to the frequency of the periodic component. Perhaps the most

satisfactory method of overcoming this difficulty, from the mathematical

point of view, is to deal with the integral of the power spectrum.^"

''

wis) dg (2.2-1)
/Jo

instead of with w(f) itself.

The definition (2.1-t) for i^(r) still holds. If, for example,

I{i) = A+Ccos (2Tfd - ip) (2.2-2)

^(t) as given by (2.1^) is

^(t) = A^ -\- - cos 27r/or (2.2-3)

The inversion formulas (2.1-5) and (2.1-6) give

r^ . ^ J 2 r , , , sin IitJt ,

\ w{g) dg = -
\ H-r) dr

Jo IT Jll T

/ -1
(2.2-4)

./'(r) =
jj

cos27r/rrf|jf w{g)dg^

" This is done by Wiener," loc. cit., and by G. W. Kenrick, "The Analysis of Irregular

Motions with Applications to the Energy Frequency Spectrum of Static and of Telegraph

Signals," Phil. Mag., Ser. 7, Vol. 7, pp. 176-196 (Jan. 1929). Kenrick appears to be one

of the first to apply, to noise problem5, the correlation function msthod of computing the

power spectrum (one of his problems is discussed in Ssc, 2.7). He bases his work on re-

sults due to Wiener. Khintchine, in "Korrelationstheorie der stationiren stochastischen

Prozesse," Math. A?malen, 109 (1934), pp. 604^615, proves the following theorem; A
necessary and sufficient condition that a function R{t) may be the correlation function of

a continuous, stationary, stochastic process is that Rit) may be expressed as

R(t) = j cos tx dF{x)

where Fix) is a certain distribution function. This expression for Rit) is essentially the

second of equations (2.2-4). Kliintchine's work has hsm esteniei by H. Cran.T, "On
the theory of stationary random processes," Ann. of Math., Ser. 2, Vol. 41 (19tJ), pp.

215-230, However, Khintchine and Cramir appear to be interested pri-narily in ques-

tions of existence, representation, etc., and do not stress the concept of the power spectrum.

Jrff^_^4«-i-i;^i- ^-i^^u»i,jW.*iri*.*aifc -
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where the last integral is to be regarded as a Stieltjes' integral. When the

expression (2.2-3) for i^(t) is placed in the first formula of (2,2-4) we get

A- when < / < /o

/ w(^) dg =
Jo

When this expression is used in the second formula of (2.2-4), the increments

of the differential are seen to be .4^ at/ = and C'^/l at/ = /o . The re-

sulting expression for ^(t) agrees with the original one.

Here we desire to use a less rigorous, but more convenient, method of

dealing with periodic components. By examining the integral of w(f) as

given by (2.2-5) we are led to write

w(f) - 2A'5(f) + y «(/ - /o) ' (2.2-6)

where S(x) is an even unit impulse function so that if e >

[ S{x) dx = i f 5{x) dx= i (2.2-7)
Jo 2 J-t

and 8{x) = except at x = 0, where it is infinite. This enables us to use

the simpler inversion formulas of section 2.1. The second of these, (2.1-6),

is immediately seen to give the correct expression for 1^(7-). The first one,

(2.1-5), gives the correct expression for w(f) provided we interpret the in-

tegrals as follows:

j cos lirfrdT = |6f/)

(2.2-8)

/ cos 2Tr/oT cos 27r/T dr = |5(/ — /o)
Jo

It is not hard to show that these are in agreement with the fundamental

interpretation

f
"

fi-"'^' dt^f e''"^' dt = b{j) (2.2-9)
J^o J— at

which in its turn follows from a formal application of the Fourier integral

formula and

[ 6(/)e""'^'(f/ = I 5(/)e-"'^'rf/ = 1 (2.2-10)

We must remember that /o > and/ > in (2.2-8) so that «(/ + /o) =
for/ > 0.
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The definition (2.1-3) for w{f) gives the continuous part of the power

spectrum. In order to get the part due to the d.c. and periodic com-

ponents, which is exemplified by the expression (2.2-6) for w(f) involving

the 6 functions, we must supplement (2.1-3) by adding terms of the type

2A'S{f) + ^j S{f - /o) = [Limit 2-1^'] 8(J)

(2.2-11)

The correctness of this expression may be verified by calculating S(f) for

the /(/) of this section given by (2.2-2), and actually carrying out the limiting

process.

2.3 Discussion of Results of Section One—Fourier Series

The fact that the spectrum of power w(f) and the correlation function

1^(t) are related by Fourier inversion formulas is closely connected with

Parseval's theorems for Fourier series and integrals. In this section we shall

not use Parseval's theorems explicitly. We start with Fourier's series and

use the concept of each component dissipating its share of energy inde-

pendently of the behavior of the other components.

Let that portion of /(/) which Ues in the interval < / < T be expanded

in the Fourier series

m =
f + t («.. CCS ?^' + K sin "p) (2.3-1)

where

dt«. =
y. j^
m cos -^

(2.3-2)

Then for the interval —T<t<T—T,

7/, , ^
flo

. V /^ 27rK(/ + t)
, , . 2wn (t + t)\

7(i + t) = - + Z^ ( a„ cos + bn sin 1 (2.3-3)

Multiplying the series for 7(0 and /(/ + t) together and integrating with

respect to / gives, after some reduction,

^}J
mi{i + T)di

= 1+ i;J(^;
+ ^^o cos ^-1?. 4.0(f)

'''"''

.. ^ ...--.' * " .
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where the last term represents correction terms which must be added be-

cause the series (2.3-3) does not represent /(/ + t) in the interval (T — r, T)

when T > 0, or in the interval (0, — r) if t < 0.

If lip) were a current and if it were to flow through one ohm for the in-

terval (0, T)j each component would dissipate a certain average amount

of power. The average power dissipated by the component of frequency

y„ = n/T cycles per second would be, from the Fourier series and elementary

principles,

i (A + 6") w-atts, « ?^

(2.3-5)

-^ watts, n =

The band width associated with the wth component is the difference in

frequency between the « + 1 th and nth components

:

/
,_«+! »_!.

Hence if the average power in the band f,f-\- df is defined as w(f)df, the

average power in the band /„+i — /„ is

w('(/n)C/n+l - /n) = W ( ^j J,

and, from (2.3-5), this is given by

7.(0) i=|. «=0
(2.3-6)

When the coefficients in (2.3-4) are replaced by their expressions in terms

of w(/) we get

lj[' /(/)/(/ + r)rf/ + o(?^)

= / w(/) cos 27r/T df
Jo

cos -^

lirtiT dn
^.cos—

-

(2.3-7)
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where we have assumed T so large and w{f) of such a nature that the summa-

tion may be replaced by integration.

If / remains finite, then as T -> « with t held fixed, the correction term

on the left becomes negligibly small and we have, upon using the definitions

(2.1-4) for the correlation function rpir), the second of the fundamental

inversion formulas (2.1-6). The first inversion formula may be obtained

from this at once by using Fourier's double integral for w(f).

Incidentally, the relation (2.3-6) between w(J) and the coefficients a„ and

bn is in agreement with the definition (2.1-3) for w(f) as a fimit involving

I
S{f) 1

1 From the expressions (2.3-2) for o„ and K , the spectrum S(Jn)

given by (2.1-2) is

Then, from (2.1-3) w(/„) is given by the limit, as T~^ «, of

© ^'and this is the expression for w ( - 1 given by (2.3-6).

2.4 Discussion of Results of Section One—Parseval's Theorem

The use of Parseval's theorem" enables us to derive the results of section

2.1 more directly than the method of the preceding section. This theorem

states that

[^ F,U)F^{J) df=[ G:(/)G2(-/) dt (2.4-1)
J— to J—ro

where Fi, d and F^, G2 are Fourier mates related by

.+=0

FU) =
I

G{t)e

Gil) =
I

^"^

F(f)e''"' df

(2.4-2)

It may be proved in a formal manner by replacing the Fi on the left of

(2.4-1) by its expression as an integral involving Gi(t). Interchanging the

" E. C. Titchmarsh, introduction to the Theory of Fourier Integrals, Oxford (1937).

fji»iitf%f^ ---'-'
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'
<

order of integration and using the second of (2.4-2) to replace F2 by G2 gives

the right hand side.

We now set G\{t) and G^it) equal to zero except for intervals of length T.

These intervals and the corresponding values of Gi and G2 are

Gi(0 = /{/), < ^ < r (2.4-3)

G^it) = I{- t-\- t), T - T <t < T

From (2.4 3) it follows that Fi(f) is the spectrum S(f) of /(/) given by equa-

tion (2.1-2). Since I(t) is real it follows from the first of equations (2.4-2)

that

Si-f) = 5*(/), (2.4-4)

where the star denotes conjugate complex, and hence that
| S{f) \

is an

even function of/.

The first of equations (2.4-2) also gives

(2.4-5)

Jj-T

Jo

When these G's and F's are placed in (2.4-1) we obtain

[ I
5(/)

I

'e-''^' dj = I
^ 1(1)1(1 + t) di (2.4-6)

where we have made use of the fact that G2(—t) is zero except in the inter-

val —T<t < T — T and have assumed t > 0. If r < the hmits of

integration on the right would be — t and T.

Since
[ S(f) f is an even function of / we may write (2.4-6) as

, ^ jj li'mt ^r)dt + (^-pj = jf
2M?ir COS lirfr df (2.4-7)

If we now define the correlation function ^(t) as the hmit, as T—* oc
^ of the

left hand side and define w(f) as the function

w(f) = Limit ^'^y^' , / > (2.1-3)
r-»co T

we obtain the second, (2.1-6), of the fundamental inversion' formulas. As

before, the first may be obtained from Fourier's integral theorem.

..-ill

> Jl.-:-?.j°.l ^
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In order to obtain the interpretation of w(f)df as the average power dis-

sipated in one ohm by those components of I{l) which lie in the band /,

/ + df, we set T = in (2.4-7)

:

Limit i r fit) dt =
I w{f) dj (2.4-8)

r-.M 1 Jo Jo

The expression on the left is certainly the total average power which would

be dissipated in one ohm and the right hand side represents a summation

over all frequencies extending from to «: . It is natural therefore to in-

terpret w(/)rf/ as the power due to the components in/,/+ df.

The preceding sections have dealt with the power spectrum w(f) and corre-

lation function i/'(t) of a very general type of function. It will be noted

that a knowledge of iv{f) does not enable us to determine the original func-

tion. In obtaining Mf), as may be seen from the definition (2.1-3) or from

(2.3-6), the information carried by the phase angles of the various compo-

nents of /(/) has been dropped out. In fact, as we may see from the Fourier

scries representation (2.3-1) of /(/) and from (2.3-6), it is possible to obtain

an infinite number of different functions all of which have the same w(f),

and hence the same ^(t). All we have to do is to assign different sets of

values to the phase angles of the various components, thereby keeping

(In + Jn constant.

2.5 Harmonic Analysis for Random FrNCiioNs

In many applications of the theory discussed in the foregoing sections

I{t) is a function of / which has a certain amount of randomness associated

with it. For example /(/) may be a curve representing the price of wheat

over a long period of years, a component of air velocity behind a grid placed

in a wind tunnel, or, of primary interest here, a noise current.

In some mathematical work this randomness is introduced by considering

/(/) to involve a number of parameters, and then taking the parameters to

be random variables. Thus, in the shot effect the arrival times /i ,t2 , Ik

of the electrons were taken to be the parameters and each was assumed to be

uniformly distributed over an interval (0, T).

For any particular set of values of the parameters, /(/) has a definite power

spectrum w(f) and correlation function i/'(t). However, now the principal

interest is not in these particular functions, but in functions which give the

average values of w(f) and ^(r) for fixed /and r. These functions are ob-

tained by averaging w(f) and )/'(t) over ihe ranges of the parameters, using,

of course, the distribution functions of the parameters.

By averaging both sides of the appropriate equations in sections 2.1 and

-aaa^M^KtfvaiAi>»^'''^-t^*'^*°'''^^ i^.TVi ;i'^^&Ati.^crVa,aii^--*:v.iWix^j.^w»'.'>
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2.2 it is seen that our fundamental inversion formulae (2.1-5) and (2.1t6)^

are unchanged. Thus, -;

«'(/)= 4 f ^(t) cos2jr/T(fr (2.5-1)
Jo

^(t) = [ w{/) COS iTrfrdf (2.5-2)
Jo

where the bars indicate averages taken over the parameters with /or rheld

constant.

The definitions of w and i^ appearing in these equations are Hkewise ob-

tained from (2.1-3) and (2.1-4)

MI) = Limit ^ly (2.5-3)

and

^(t) = Limit i f I{l)I{t + T)dt (2.5-4)
T—oo -I JO

The values of f and t are held fixed while averaging over the parameters.

In (2.5-3) S(^) is regarded as a function of the parameters obtained from

m by

S{J) = r Iit)e~'"'' dt (2.1-2)
Jo

Similar expressions may be obtained for the average power spectrum for

d.c. and periodic components. All we need to do is to average the ex-

pression (2.2-11)

Sometimes the average value of the product T{l)l(i + t) in the definition

(2.5-4) of 1^(7-) is independent of the lime T. This enables us to perform

the integration at once and obtain

Hr) = I{i)I{t + t) (2.5-5)

This introduces a considerable simplification and it appears that the simplest

method of computing wf) for an 7(0 of this sort is first to compute ^{t), and

then use the inversion formula (2.5-1).

2.6 First Example--The Shot Effect

We first compute the average on the right of (2.5-5). By using the

method of averaging employed many times in part I, we have

mi{t + r) = E p{K) U{i)U{t + r) (2.6-1)
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where p(K) is the probability of exactly K electrons arriving in the inter-

val (0, D,

PiK) = ^-^ e-'^ (1.1-3)

and

IkO) =JlFit- k) (1.3-1)

Multiplying /«(/) and lK{t + t) together and averaging ii , 12, Ik

over their ranges gives

I,it)I,{t + r) = tt r^--- f^-^Hi-k)Fii-hr-Q
i-l in=I Jo I Jq I

This is similar to the expression for Jl(t) which was used in section 1.3 to

prove Campbell's theorem and may be treated in much the same way.

Thus, if t and / + t lie between A and T — A, the expression above becomes

K £" F(l)F(l -\-r)dt + ^^^;^ [£" F(0 dl'J

When this is placed in (2.6-1) and the summation performed we obtain

an expression independent of T. Consequently we may use (2.5-5) and get

Ut) = V f Fit)F(t + r) rf/ + I{Ff (2.6-2)
J— 00

where we have used the e.xpression for the average current

/+"
F(l) dt (1.3-4)

00

In order to compute w{f) from ^(7) it is convenient to make use of the

fact that V'(t) is always an even function of t and hence (2.5-1) may also

be ™tten as

(/) = 2 / i/'(t) cos lirfr dr (2.6-3)
•i—tf)

Then

dt F{1) / dr F{1 + r) COS 2x/t

/+- „

V 2 / /(/)" cos 2f/t dr
J-ao

.*««rt-"-'- '^. -=.^-'vi^-.- /-..,.->,*.'».. -.^S.';-: -^^,.,,--fc;. :. l.ll.^^. ,-,4.
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= 21- Real Part of f di F{t)e-^'"" T dt' F{ty^'"' -'-

J— so J—

M

'

'f—tc

= 2H^(/)l' + 2/(^'5(/) (2.6-4)

In going from the first equation to the second we have written /' = / + t

and have considered cos Itt/t to be the real part of the corresponding ex-

ponential. In going from the second equation to the third we have set

s(f) = [ F{t)e-^"^' dl (2.6-5)

and have used

e'-'^Ut = h{f) (2.2-9)£
The term in w{J) involving 5(/) represents the average power which would

be dissipated by the d.c. component of I{l) in flowing through one ohm.

It is in agreement with the concept that the average power in the band

0</<e, €>0 but very small, is

fw{f)dt= iTiff ( mdf
•'0 Ja (2.6-6)

The expression (2.6-4) for wij) may also be obtained from the definition

(2.5-3) for 'zt'(/)plus the additional term due to the d.c. component ob-

tained by averaging the expressions (2.2-11). We leave this as an exercise

for the reader. He will find it interesting to study the steps in Carson's^^

paper leading up to equation (8). Carson's R{<ji) is related to our w{f) by

wij) = 27rJ2(oj)

and his /(/w) is equal to our s(f).

Integrating both sides of (2.6-4) with respect to/ from to «; and using

gives the result

'^ Loc. cit.

P = [ Mf) df

P-f = 2v\'^ \s{f)Uf (2.6-7)
Jo
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This may be obtained immediately from Campbell's theorem by applying

Parseval's theorem.

As an example of the use of these formulas we derive the power spectrum

of the voltage across a resistance R when a current consisting of a great num-
ber of very short pulses per second flows through R. Let F{t — h) be the

voltage produced by the pulse occurring at time tk . Then

where <p(t) is the current in the pulse. We confine our interest to relatively

low frequencies such fhat we may make the approximation

J— 00

^(0 dt = Rq

where q is the charge carried through the resistance by one pulse. From
(2.6-4) it follows that for these low frequencies the continuous portion of

the power spectrum for the voltage is constant and equal to

w{J) = 2vR'i = 2IR\ (2.6-8)

where I = vq\s the average current flowing through R. This result is often

used in connection with the shot effect in diodes.

In the study of the shot effect it was assumed that the probability of an
event (electron arriving at the anode) happening in dt was vdt where v is the

expected number of events per second. This probability is independent of

the time /. Sometimes we wish to introduce dependency on time.'^ As an
example, consider a long interval extending from to T. Let the prob-

ability of an event happening in t,t -\- di be Kp(t)dt where K is the average

number of events during T and p(t) is a given function of t such that

• r

p{t)dr= 1
/Jo

For the shot effect p{i) = 1/T.

What is the probability that exactly K events happen in T? As in the

case of the shot effect, section 1.1, we may divide (0, T) into A^ intervals

each of length At so that NAt = T. The probability of no event happening

in the first At is

1 - Kp{^)At-"(!)
18 A careful discussion of this subject is given by Hurwitz and Kac in "Statistical

Analysis of Certain Types of Random Functions." I understand that this paper will
soon appear in the Annals of Math. Statistics.

iViiiiiJi^ Vmiiiiiiit I'wi i'l'V
^^^< ^^mim^=kiipai^-
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The product of N such probabilities is, as A^ —» «= , A/ ^ 0;

expF-^l p{t)dt\ = e^"

This is the probability that exactly events happen in T. In the same way

we are led to the expression

r-K

^ B-" (2.6-9)
K. !

for the probability that exactly K events happen in f.

When we consider many intervals (0, T) we obtain many values of K and

also many values of / measured / seconds from the beginning of each interval.

These values of / define the distribution of / at time i. By proceeding as in

section 1.4 we find that the probability density of / is

P(/, ,) = 1 j^ du exp [-»«/ + ^ j[' PixW"''-" - 1) d^

The corresponding average and variance is

1 = K ( p{x)F{t - x) dx
Jo

(/ - 7)' = K f p{x)F\t - x) dx (2.6-10)
Jo

If S{j) is given by (2.1-2) and s{J) by (2.6-5) (assuming the duration of

F{t) short in comparison with T) the average value of
|
S{})

\
may be ob-

tained by putting (1.3-1) in (2.1-2) to get

5.(/)=.(y)L«-^"""*

Expressing Sk{j) 5*(0, where the star denotes conjugate complex, as a

double sum and averaging over the /jt's, using p{t), and then averaging over

the iC's gives

FW)? = K.
I
5(/) 1= [l + ^

I

jf"" p{x)e-'''^' dx
I']

(2.6-11)

This may be used to compute the power spectrum from (2.5-3) provided

p{x) is not periodic. If p{x) is periodic then the method of section 2.2

should be used at the harmonic frequencies. If the fluctuations of p{t) are

slow in comparison with the fiuctuations of F{t) the second term within the

brackets of (2.6-11) may generally be neglected since there are no values of
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/which make both it and s(f) large at the same time. On the other hand,
if both ^(0 and F{t) fluctuate at about the same rate this term must be
considered.

2.7 Second Example—Random Telegraph Signal"

Let T(t) be equal to either <z or — o so that it is of the form of a flat top
wave. Let the intervals between changes of sign, i.e. the lengths of the

tops and bottoms, be distributed exponentially. We are led to this dis-

tribution by assuming that, if on the average there are fi changes of sign per
second, the probability of a change of sign in /, ; + dt is fidt and is independ-
ent of what happens outside the interval /, i -\- dt. From the same sort of

reasoning as employed in section 1.1 for the shot effect we see that the

probability of obtaining exactly K changes of sign in the interval (0, T) is

PiK) =^^"''" (2.7-1)

We consider the average value of the product r(t)l{t + r). This product
is a if the two /'s are of the same sign and is — a if they are of opposite sign.

In the first case there are an even number, including zero, of changes of sign

in the interval (t, t -\- r), and in the second case there are an odd number of

changes of sign. Thus

Average value of I{t)I{i -1- t) (2.7-2)

= a X probabiHty of an even number of

changes of sign in (, / + t

— a X probability of an odd number of

changes of sign in ^, / + t

The length of the interval under consideration is|/+T — ^| = |t| seconds.

Since, by assumption, the probability of a change of sign in an elementary
interval of length A/ is independent of what happens outside that interval,

it follows that the same is true of any interval irrespective of when it starts.

Hence the probabilities in (2.7-2) are independent of t and may be obtained
from (2.7-1) by setting T = \t\. Then (2.7-2) becomes, assuming r >
for the moment,

mm + r) = a\p{Q>) + p{2) + ^(4) + • •]

-a[p{\) +/.(3) +/.(S)+ ...I

= a\-''[-^-'#--]
= a'e-'"' (2.7-3)

" Kenrick, cited in Section 2.2.

•'-•**.
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From (2.5-5), this gives the correlation function for /(/)

^(r) = aV'"'^' (2.7-4)

The corresponding power spectrum is, from (2.5-1),

w{f) = ^i \ e'^"" cos 2jr/r dr

2aV
(2.7-5)

K-^P + M^

Correlation functions and power spectra of this type occur quite fre-

quently. In particular, they are of use in the study of turbulence in hydro-

dynamics. We may also obtain them from our shot effect expressions if we

disregard the d.c. component. All we have to do is tc assume that the

effect F{t) of an electron arriving at the anode at time / = is zero for

t < 0, and that F{t) decays exponentially with time after jumping to its

maximum value at / = 0. This may be verified by substituting the value

Fit) =2aA/~^e'"'\ i>0 (2.7-6)

for F{t) in the expressions (2.6-2) and (2.6-4) (after using 2.6-5) for the

correlation function and energy spectrum of the shot effect.

The power spectrum of the current flowing through an inductance and a

resistance in series in response to a very wide band thermal noise voltage is

also of the form (2.7-5).

Incidentally, this gives us an exanlple of two quite different /(O's, one a

flat top wave and the other a shot effect current, which have the same corre-

lation functions and power spectra, aside from the d.c. component.

There is another type of random telegraph signal which is interesting to

analyze. The time scale is divided into intervals of equal length h. In an

interval selected at random the value of I{t) is independent of the values in

the other intervals, and is equally likely to be +fl or —a. We could con-

struct such a wave by flipping a penny. If heads turned up we would set

T{t) = a'mO < t < h. H tails were obtained we would set I(t) = — a in

this interval. Flipping again would give either -f o or —a for the second

interval h < t < 2h, and so on. This gives us one wave. A great many

waves may be constructed in this way and we denote averages over these

waves, with t held constant, by bars.

We ask for the average value of I{t)I(t + t), assuming t > 0. First

we note that if t > A the currents correspond to different intervals for all
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values of /. Since the values in these intervals are independent we have

l{t)nt + r) = I{1) l{t-\-T) =

for all values of / when t > h.

To obtain the average when t < A we consider / to lie in the first interval

< t < h. Since all the intervals are the same frcm a statistical point

of view we lose no generality in doing this. If / + t < A, i.e., t < h — t,

both currents Ue in the first interval and

/(/)/(/ + t) = a'

If / > A — T the current I{t + t) corresponds to the second interval and

hence the average value is zero.

We now return to (2.5-4). The integral there extends from to T.

When T > h, the integrand is zero and hence

^(r) =0, T> k (2.7-7)

When T < h, our investigation of the interval < t < k enables us to write

down the portion of the integral extending from to h:

[ Iit)Iit -\- T)dt = f a^dt+ I Odi
Jq jo Jh-T

= a\h - t) . '

Over the interval of integration (0, T) we have T/k such intervals each

contributing the same amount. Hence, from (2.5-4),

^(r) = Limit ^.f(/^-r)
r-»o3 I ft

The power spectrum of this type of telegraph wave is thus

w(f) = 4(i' [ (l -j) cos 2jr/r dr

(2.7-8)

(2.7-9)

This is seen to have the same general behavior as w(f) for the first type

of telegraph signal given by (2.7-5), when we relate the average number,

fi, of changes of sign per second to the interval length k by iih = 1.

ii^Milii-Wjiwa^AiJita*. • ""*^*^^***fcttt4iaS\ t«^i^ii»iart-.iiH!fc*i*wi».iKwt«a*.^rt../'-*--t-*.^«'-^^tt-- -
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2.8 Representation or Noise Cuebent

In section 1.8 the Fourier series representation of the shot effect current

was discussed. This suggests the representation*

N

7(0 = E («- cos 6i„/ + 6„ sin WnO (2.8-1)
n-l

where

o>. = 27r/n , /„ = «A/ (2.8-2)

an and h are taken to be independent random variables which are distributed

normally about zero with the standard deviation y/w{J„)LJ. w(f) is the

power spectrum of the noise current, i.e., w{f) dfis the average power which

would be dissipated by those components of /(/) which lie in the frequency

range/,/ + df'ii they were to flow through a resistance of one ohm.

The expression for the standard deviation of fl„ and b„ is obtained when

we notice that A/ is the width of the frequency band associated with the nth

component. Hence w(/„)A/ is the average energy which would be dissi-

pated if the current

a„ cos a)„/ + 6n sin &)„/

were to flow through a resistance of one ohm, this average being taken over

afl possible values of a„ and b„ . Thus

w(/„)A/= alcos'unt-^- 2a„&„cos ojjsinwnf + 6„sin wj = an = h„ (2.8-3)

The last two steps follow from the independence of o„ and J„ and the identity

of their distributions. It will be observed that w{}), as used with the repre-

sentation (2.8-1), is the same sort of average as was denoted in section 2.5

by wij). However, w{j) is often given to us in order to specify the spectrum

of a given noise.

For example, suppose we are interested in the output of a certain filter

when a source of thermal noise is applied to the input. Let A{f) be the

absolute value of the ratio of the output current to the input current when a

steady sinusoidal voltage of frequency / is applied to the input. Then

u-U) = cA\j) (2.8-4)

*As mentioned in section 1.7 this sort of representation was used by Einstein and

Hopf for radiation. Shottky (1918J used (2,8-1), apparently without explicitly taking

the coefficients to be normally distributed. Nyquist (1932) derived the normal distribu-

tion from the shot eSect.
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If W is the average power dissipated in one ohm by /(/),

W = Limit ^ / f{t) dt = \ w(f) df

= cfA\f)d/

(2.8-5)

which is an equation to determine c when W and A(f) are known.

In using the representation (2.8-1) to investigate the statistical properties

of /(/) we first find the corresponding statistical properties of the summation

on the right when the a's and b's are regarded as random variables distrib-

uted as mentioned above and t is regarded as fixed. In general, the time

t disappears in this procedure just as it did in (2.8-3). We then let JV -^ oo

and A/—^ so that the summations may be replaced by integrations. Fi-

nally, the frequency range is extended to cover all frequencies from to «=

.

The usual way of looking at the representation (2.8-1) is to suppose that

we have an oscillogram of I{t) extending from / = to / = co
. This oscil-

logram may be cut up into strips of length T. A Fourier analysis of I(t)

for each strip will give a set of coefiBcients. These coefficients will vary

from strip to strip. Our representation (TAf = 1) assumes that this varia-

tion is governed by a normal distribution. Our process for finding sta-

tistical properties by regarding the a's and 6's as random variables while /

is kept fixed corresponds to examining the noise current at a great many

instants. Corresponding to each strip there is an instant, and this instant

occurs at / (this is the I in (2.8-1)) seconds from the beginning of the strip.

This is somewhat like examining the noise current at a great number of

instants selected at random.

Although (2.8-1) is the representation which is suggested by the shot

effect and similar phenomena, it is not the only representation, nor is it

always the most convenient. Another representation which leads to the

same results when the limits are taken is"

N

/(/) = T. ^n COS (u„/ - <p„) (2.8-6)
n~l

where tpi ,if2 , • • • ^Pn are angles distributed at random over the range (0, 2jr)

and

c„ = [27X'(^)A/]"^ co„ = 27r/„
, /„ = nA/ (2.8-7)

1" This representation has often been used by W. R. Bennett in unpublished memoranda
written in the 1930's.

i^-iirf' ^^i<^.^\J>^i^~'»f'•^'i-:''''•^^.*-i'<^^l*<!'^i^^*m^
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In this representation I(t) is regarded as the sura of a number of sinusoidal

components with fixed amplitudes but random phase angles.

That the two different representations (2.8-1) and (2.8-6) of 7(0 lead

to the same statistical properties is a consequence of the fact that they are

always used in such a way that the "central limit theorem*" may be used

in both cases.

This theorem states that under certain general conditions, the distribu-

tion of the sum of A' random vectors approaches a normal law (it may be

normal in several dimensions**) as JV —> x . In fact from this theorem it

appears that a representation such as

/(/) = £ {a„ cos a)„/ + 6„ sin u„0 (2.8-6)
n-l

where a„ and 6„ are independent random variables which take only the values

± [w{f„)Aff'^, the probabiUty of each value being ^, will lead in the limit

to the same statistical properties of /(/) as do (2.8-1) and (2.8-6).

2.9 The Normal Distribution in Several Variables^"

Consider a random vector r in K dimensions. The distribution of this

vector may be specified by stating the distribution of the K components,

xi , X2 , • Xk , oi r. r is said to be normally distributed when the prob-

ability density function of the x's is of the form

(27r)-^''
I

U r'" exp [-Ix'M-'x] (2.9-1)

where the exponent is a quadratic form in the s's. The square matrix M
is composed of the second moments of the a-'s.

M = (2.9-2)
fin fin •• • MiK

_filK: • • y-KK_

where the second moments are defined by

Mu = a-1 , {112 = a-i.r2 , etc. (2.9-3)

I
M

I

represents the determinant of M and x' is the row matrix

x' = [.vi,.r2,---.rAl (2.9-4)

X is the column matrix obtained by transposing x'.

*See section 2,10.

" See section 2.9,

" H. Cramer, "Random Variables and Probability Distributions," Chap. X., Cambridge

Tract No. 36 (1937).

.^
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The exponent in the expression (2.9-1) for the probability density may
be written out by using

x'M-'x^i:j:f^,XrX. (2.9-5)

where Mra is the cofactor of Urs in M.
Sometimes there are linear relations between the a;'s so that the random

vector r is restricted to a space of less than K dimensions. In this case the

appropriate form for the density function may be obtained by considering

a sequence of X-dimensional distributions which approach the one being

investigated.

If fi and f2 are two normally distributed random vectors their sum n + r^

is also normally distributed. It follows that the sum of any number of

normally distributed random vectors is normally distributed.

The characteristic function of the normal distribution is

tLVC. C — exp -^Z E M..2rS« (2.9-6)

2.10 Central Limit Tiieorem

The central limit theorem in probability states that the distribution of the

sum of N independent random vectors ri + r2 + • -|- r^ approaches a

normal law as A'^^ «> when the distributions of n , ra , r^ satisfy certain

general conditions.'

As an example we take the case in which ri , ra , • • • are two-dimensional

vectors^\ the components of r™ being Xn and Vn . Without loss of generality

we assume that

Xn = 0, Sn = 0.

The components of the resultant vector are

X = xi + X2 + -[ Xn
(2.10-1")

; Y = yi-\- y2-\- -\- yN

and, since n , ^2 , are independent vectors, the second moments of the

resultant are

fia= X = a:i -f a-2 + • • • + av

1112 = Y' = yl + yl-\- • +yl (2.10-2)

fiu = XY = xiyi + .T23'2 + • • + -r.v3V

' Incidentally, von Laue (see references in section 1.7) used this theorem in discussing
the normal distribution of the coefficients in a Fourier series used to represent black-body
radiation. He ascribed it to Markoff.

" This case is discussed by J. V. Uspensky, "Introduction to Mathematical Probabil-

ity", McGraw-Hill (1937) Chap. XV.

^ii^.a^ittfeg»MS^cMaiai!Mg
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Apparently there are several types of conditions which are sufficient to

ensure that the distribution of the residtant approaches a normal law. One

sufficient condition is that

JV

J/2

Mil
-"' E K

";' (2.10-3)

The central limit theorem tells us that the distribution of the random

vector (X, Y) approaches a normal law d.s N -^ « . The second moments

of this distribution are given by (2.10-2). When we know the second mo-

ments of a normal distribution we may write down the probability density

function at once. Thus from section 2.9

Lm12 M22J L~Atl2 miJ

\
M

\
= M11M22 ~ M12

x' = [X, Y]

x'M-'x =
I
M r'(M22X' - 2nnXY + a^uI'')

The probability density is therefore

(miiMzb - tJ-^r^'^ r -ti22X^ - finY^ + 2mi2XF"| ^2.10-3)
2t L 2(Mn/i22 — /iw) J

Incidentally, the second moments are related to the standard deviations

ffi , 0-2 of X, Y and to the correlation coefficient t of X and Y by

Mil = ffl , ^22 = 0-2, M12 = TO'lO'2 (2.10-4)

and the probability density takes the standard form

(i^^' exp r-,-^^ (^ - 2.
^^ +m (2.10-5)

2x0-1(72 L 2(1-t)Vi fficra ff2/J

" This is used by Uspensky, loc. cit. Another condition analogous to the Lindeberg

condition is given by Cramerj^" loc. cit.

(To be concluded)


